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Abstract-The volumetric coefficients of attenuation and scattering, and scattering indicatrices of disperse 
media with metallic additives are analyzed. The methods to calculate radiant fluxes in anisotropically 
scattering media are proposed for parallelplane and spherically symmetric beds. The effect of the 

parameters of a medium microstructure on radiant fluxes is studied. 

NOMENCLATURE 

ai, coefficients of expansion into Legendre 
polynomial series of the scattering indicatrix; 

4 specific weight of particle material; 

4, monochromatic radiation intensity; 

41, monochromatic radiation intensity of 
absolutely black body; 

i1(Q &(O), Mie-functions [l]; 
k 

katt.kat, 
attenuation coefficient; 
coefficients of attenuation and scattering on 
a single particle; 
bed thickness; 
ith Legendre polynomial; 
radiant flux; 
modal radius; 
temperature; 
absorption coefficient ; 
scattering coefficient; 

weight particle concentration; 
Kronecker symbol; 
emissivity ; 
dimensionless temperature; 
angle ; 
wavelength; 
= cos 8; 
parameter of medium microstructure; 
geometry factor; 
difraction parameter; 

WA, 00, spectral and integral albedo of single 
scattering. 

OPAQUE particles capable of absorbing and scattering 

radiation may usefully be introduced into the wall layer 

in many problems on surface protection from thermal 

radiation. The problems on hydrodynamics and 

radiative transfer in a non-uniform gas flow are 

characterized by great complexity, and particular 

aspects are studied inadequately, because alongside 

with radiative-convective transfer phase transitions, 

coagulation and aglomeration of particles should be 

accounted for. First of all, study of optical properties of 
a unit volume of a disperse medium seems probably 
useful since calculation of radiant fluxes in disperse 
media is based on the data on attenuation coefficients 
and scattering indicatrices of a unit volume. 

In this work radiant attenuation due to absorption 
and scattering by a unit volume of a polydisperse 
medium with metallic additives is investigated within 
the framework of the single scattering theory. Multiple 
scattering occurs when radiation passes through a 
disperse bed. The method to calculate radiant fluxes 
in a parallel-plane and spherically symmetric disperse 
bed is proposed. The effect of scattering parameters 
and medium microstructure on radiant fluxes is 
analyzed. 

1. REGULARITIES OF RADIANT ATTENUATION 
AND SCATTERING BY MONO- AND 

POLYDISPERSE MEDIA 

Radiation attenuation by single spherical particles 
due to absorption and scattering is thoroughly studied 
using Mie’s theory [l]. Most detailed studies are 
described in [2-51. For example, a particle cluster in 
the systems of different-size particles is of practical 
interest for studying thermal protective materials. At 
present vast material on radiation attenuation and 
scattering by such polydisperse media has been 
accumulated. The results obtained in [5-71 have 
essentially contributed to the information on radiant 
scattering, but they contain either parametric 
calculations or the analysis of scattering phenomena 
by specific media: aqueous aerosols, hail, dust clouds, 
etc. These works are therefore of little interest for 
studying radiative attenuation by disperse media with 
metallic particles. 

The calculation which will follow allow the relation- 
ships between basic values of radiant absorption and 
scattering and the microstructure of a disperse medium 
with metallic spherical particles to be thoroughly 
elucidated. The data on the complex refraction index 
typical for many metals and used for calculating 
attenuation coefficients and indicatrices are given in 
Fig. 1. 
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1.1. 
A 

Monodisperse bed 
monodisperse bed is the extreme case of a poly- 

disperse one. The values of the attenuation coefficients 
of a monodisperse bed allow the upper limit of the 
same coefficients of a polydisperse bed to be found. 

If a unit volume of a transparent gas contains N 
non-reacting particles of uniform radius r with the 
distance between their centres at least 3r, then the 
volumetric attenuation coefficient is defined by [3] : 

kj, = Nm2k,,, , (1) 

I I I 
0.1 0.2 0.5 I 2 

FIG. 1. Complex index of refraction m = n - iK vs 

wavelength. 

where k,,, is the attenuation coefficient for a single 
particle. In many practical problems, it is more 
convenient to prescribe the dependence in the unit 
volume on the weight concentration rather than on the 
particle quantity in a unit volume y: 

(1”) 

where d is the specific weight of the particle material. 
The formulae for volumetric coefficients of scattering 

and absorption are the same. Figure 2 gives the plot of 
spectral mass coefficients of attenuation kJy and 
scattering pdy vs particle radius r. The quantities 
k,,,, k,,,, in formula (1”) are calculated for single particles 
using Mie’s formula [l] based on Deirmendjan’s 
methods [5]. The curves in Fig. 2 show that particles 
0*01403 pm in radius possess the largest attenuation 
coefficients but only over a narrow range of the wave- 
lengths considered. Particles 0~05-007 pm in radius 
are therefore more effective for radiant attentuation, 
since these have large attenuation coefficients and a 
smooth spectral relationship over a sufficiently wide 
spectral range. 

1.2. Polydisperse bed 
Now consider a polydisperse medium assuming that 

all particles are spherical and possess the same optical 
properties. The microstructure of the polydisperse 
medium is characterized by the particle size distribution 
functionf(r). In many cases a sufficient approximation 
to the real distribution is ensured by the gamma- 
distribution (Fig. 3): 

f(r) = Ar’@exp -,uO L 
[ 1 

(2) 
r0 

FIG. 2. Spectral mass coefficients of atten- 
uation (solid lines) and scattering (dashed 
lines) of monodisperse media vs particle 

radius. 

r 

FIG. 3. Particle size gamma-distribution at 
r. = 0.1 pm. 
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where A is the normalization factor, p0 is the parameter 
of the relative half-width of the distribution function, 
r. is the most probable or modal particle radius. The 
half-width of function (2) or the distance between its 
branches B at the levelf(r) = 05 .f(ro) [13] is equal to: 

B = 2.48ro/ JC&,). 

The spectral volumetric attenuation coefficient kL 
for scattering /Ij. and absorption tli in the polydisperse 
medium is described by: 

s P2 

’ 27I 
&-(#att(P)dp 

k. =a/_ G” ,. 
4dA P= 

i p3f(p) dp 

=$k;. (3) 

JPI 

The coefficients k’,, 8; and normalized indicatrices of 
scattering by a unit volume of the polydisperse medium 

s 

rI 

r(e) = ; & ” 
0 

[~~(@+MNf(r)dr 

I 

s 

,l (4) 
?f(r) dr 

II 

are calculated on the electronic computer Minsk-32 
by the methods described in [7]. The modal particle 
radius r. varied within 0.03 < r. < 1.2um; the 
parameter cl,,, within 2 < p. < 10. Integration with 
respect to the sizes was made from pi = 0.025 to pZ, 
determined byf&) = 10-5f(po). 

The spectral coefficients of attenuation k; and 
scattering 8; (Figs. 46) are rather smooth functions 
of the wavelength at r > 0.1 pm (Fig. 4). Such poly- 
disperse media may be considered grey over the wave- 
length range investigated. As far as the modal size r. 
decreases, the curves become non-linear (Fig. 5) and 
involve maxima most pronounced at r. < 0.05 pm. 
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FIG. 4. Spectral coefficients of attenuation k> 
(solid lines) and scattering B; (dashed lines) 
versus modal particle size r,, (figures at the curves 

at pLo = 2. 
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FIG. 5. Spectral coefficients of attenuation k’, 
(solid lines) and scattering B; (dashed lines) vs 
parameter pLa for polydisperse medium, 
r. = 0.1 pm. The upper curve--k’, for mono- 

disperse medium. 
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RG. 6. Spectral attenuation coefficients 
k; for fine polydispersions at r0 = 0.05 

pm, r0 = 0.03 m 
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A, pm x. !A” 

FIG. 7. Spectral distributions of parameter Us for different 
modal radii at p0 = 6 (a) and of parameter p0 (b) at 

ro = 0.1 pm. 

With an increase in p0 (Fig. 6), i.e. when the medium 
becomes monodisperse, the attenuation coefficients 
grow achieving the values for a monodisperse medium 
at r = ro. 

Figure 7(a, b) shows the effect of parameters r. and 
p. upon the single scattering albedo wl. 

Typical scattering indicters for a unit volume of a 
polydisperse medium are given in Fig. 8. 

For polydisperse media with fine particles 

k0 - O*OSpm), with an increase in p. scattering 
approaches isotropic one (Fig. 8a, b). For more coarse 
modal sizes (Fig. 8d) almost the whole energy dissipated 
by a unit volume stretches into a narrow beam directed 
exactly forward, i.e. scattering does not practically 
contribute to net radiant attenuation. Radiant 
attenuation occurs only due to absorption. As the 
wavelength /1 increases, the scattering indicatrix 
becomes less advanced (Fig, SC). 

(a) 

(d) 

FIG. 8. Shape of scattering indicatrices of polydisperse 
media: a, b-for fine particles, r0 < 0.1 pm; C-W wavelength 

,I; d-for coarse particles, r, = 0.6 m. 

2. CALCULATION METHOD FOR RADIANT 
FLUXES IN DISPERSE MEDIA 

In the radiant heat-transfer theory different methods, 
both approximate and exact, which refer to the class 
either of differential or of integral ones, are developed 
to solve the radiation transfer equation. The both 
classes are being developed simultaneously by various 
workers. However, application of the integral methods 
to the radiation transfer equation does not allow 
frequently its solution to be obtained in the analytica 
form, and much computer time is needed to get a 
numerical solution. Therefore, together with the 
integral methods the simple approximate differential 
ones should be developed for radiant heat transfer. 
The advantage of the former is relative simplicity, the 
possibility to describe the problem by the well-known 
class of differential equations which are fairly coupled 
with those for heat conduction and convective heat 
transfer when solving complex heat transfer problems. 

2.1. Purulle~-plume bed 

During the recent years wide use has been made of the 
moment method and its modifications [X-lo] which 
allows the equations for radiant flux qR, or its com- 
ponents to be obtained based on the appropriate 
integration of the radiation transfer equation. Good 
accuracy of this method [S] is obtained when applied, 
to a first approximation, to an isotropically scattering 
medium. The calculation method of radiant fluxes, 
equivalent to the first approximation of the moment 
method [9], was proposed for anisotropically scattering 
media with the arbitrary indicatrix. However, in 
deriving the equation for qRi the discontinuity of 
I, (TV, p) at p = 0 was not accounted for. In addition, 
only the first term a, of scattering indicatrix expansion 
into the Legendre polynomials regards for the scatter- 
ing indicatrix effect upon the radiant flux. In such a 
case the value of the radiant flux is not always obtained 
with sufficient accuracy, especially in case of a far 
advanced scattering indicatrix. 

The present work deals with the method of 
calculation of radiant heat transfer in the parallel- 
plane bed of absorbing, radiating and anisotropically 
scattering media. This method is a modification of the 
spherical harmonic method which was first proposed by 
Ivon [Ill] for solution of neutron transfer equations. 
To a first approximation, the system of ordinary 
differential fourth-order equations is obtained for 
radiant fluxes. This system allows for any numbers of 
the terms of scattering indicatrix expansion into the 
Legendre polynomials. 

Consider a parallel-plane suspension bed bounded 
by diffusely emitting surface. The radiation transfer 
equation for the spectral radiation intensity in- 
dependent of the asimuthal angle cp has the form: 
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The boundary conditions at the surfaces with 

temperatures T (i = 1,2) and emissivity Ei are as 

follows : 

tj. = TO>,; r,F(zi.9 PL) = Ei.2JB;(TZ) 
(6) 

s 

1 

+2(1 -EAz) CC~o,, h@L, 
0 

where I:(T,, p) are intensities at positive and negative 

P* 
The calculation method for radiant fluxes is based 

on the concept of the radiation intensity in terms of the 
Legendre polynomials series. Here, because of the 
discontinuity of Zrz(zd, cl) at p= 0 two different series are 
used : 

IF(Tj., /A) = & z (2i+ l)Zi*(~a)Pi(2~f1). (7) 
i 0 

Series (7) allows a sufficiently simple expression to be 
obtained for the radiant flux: 

s 

1 

qRi = 271 WA, dpdp = t{[GhbG(~J] 
-1 

+[b+(~d+WJl) = ;Pkh~+ M4. (8) 
Substitution of expression (7) into radiation transfer 
equation (5) and some mathematical transformations 
[12] result in the system: 

+~{r,‘(r3r+i+k+zi-(r3ri+k}; 

(-1)‘+k+lzikd~+Bik1;(23 

A 

= 4n(l-w#OkZ&(?-) 

+~lri’(r3r+i-k+r,(r3y-i-k} 

(i, k = 0, 1,2,. . .) (9) 

under the boundary conditions for the series moments 
Zif(~*) : 
TA = 0: &,&+(o) = 4%5>,JZ,j1(T&,k 

+2(1 -&Al)zi-(0)%O BOk 

(10) 

Here 
+2(1 --E,d~i+(~o&io 60k 

i,k=i-1 

2i+l 
tlik = 

I 

-,k=i 
2 

bik = 

0, i # k 

T,k=i+l 2i+l, i = k. 

CO,k>i+l,k<i-1 
The coefficient matrix (11) 

1 1 

Y +i+k = Pi+ 1)(X+ 1) 
s s 

dp &(2p-l) 
0 0 

x f’i(W - lP(p, $1 dcr’ 

Y+i-k = (2i+ 1)(2ki- 1) ’ dp 
s s 

’ P,(2p+ 1) 
-1 0 

1 s s 0 

Y-i+k = (2i+ 1)(2k+ 1) dp pkt+ - l) 
0 -1 

x piVp’+ ~)P(P, p’)dd 

7-j-k = (2i+ 1)(2k+l) 

possesses symmetry properties : 

1. Yzti+k = “?+kti 

(12) 

2* Y+O+k+Y-Otk = 

2, k=O 

0, kal 

Y-O+k+Y-O-k = 1 2, k=O (13) 
o 

3. Y-i-k = (-l)“‘y,i:k 

k> I 
, 

Y+i-k = (-l)i’ky-i+k. 

With a finite number M in series (7) taken, system (9) 
of 2(M+ 1) equations is obtained for Ii*( 

It should be noted that at A4 = 0 system (9) at 
boundary conditions (10) coincides with the known 
Schwartzschield-Schuster approximation. The radiant 
flux to this approximation is given by : 

qRn = %[&%>-~,_h,] = hhb,). (14) 
At M = 1, upon some transformations of system (9) 
with relations (11)-(13), the system of ordinary 
differential fourth-order equations with constant 
coefficients is got to calculate radiant heat transfer: 

dl, (TJ 
_c = A,l,(t,)+A,I,(~j~+24~(1_o,)Z,,(T) 

dzi 

where 

M21) = Z,+(r$+Z&), Utd = Zl%J-Z;IQJ 

The coefficients of system Ai depend on parameter 
wi and coefficients of expansion into the Legendre 
polynomial series of the scattering indicatrix ai : 

A 1 = 3(w,-1) 

~42 = +~&~AY~-Y,)] 

A3 = l--ml 

Aq= -A2 

A5 = ~[~w,(Y,-Y,)-~cu~Y,-~~ 
4. = 4[6wr~h+~5)+6] 
-4, = tCwn(~~+Y4)-O~(Y1-Y2)+21 
A 8 = 3[co~(Y5+YS)--wI(Y3+Y4)-6] 

y1 = l+Sa,+&z~+&z~, yz = 2-y, 

Y3 = 3(1-Y1 ++a,), Y4 = Y3 

y6 =9[Y1-2(1++ua,)]+36 +;u,+&u,+&jz@4 
1 

Ys = 2&--Y,. 
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In the above formulae the number of the terms for 
scattering indicatrix series is limited to I= 5 since such 
indicatrices are of greatest interest. 

Boundary conditions (10) closing system (15) may be 
reduced to : 

Tj.=o; I,+l,=O, 

/1+13 =S~E~,~IB;(T~)+(~-E~~)(/~-~~) (16) 

rj, = re;,; 12 - /4 = 0, 

As has earlier been shown [12], based on system 
(15)-(16) calculation of radiant fluxes ensures good 
accuracy of the method. Comparison of the expressions 
for exact radiant flux (8) with the S~hwart~chield- 
Schuster approximation (14) shows that the difference 
lies in the terms 1:(7J+1;(7J which is neglected at 
M = 0. This is the reason of insufficient accuracy of 
the Schwart~chield-Schuster appro~mation in many 
cases. The approximation M = 1 eliminates this draw- 
back. 

The spectral radiant fluxes in absorbing and 
scattering media were calculated to analyze the effect 
of scattering parameters and the medium micro- 
structure upon radiant attenuation: 

&, = 2 (2 = 0.3 urn). 
O* 

Solution of system (15) with the boundary conditions 

r;, = 0; lZ + f4 = 0. Ei + j3 = 8~71~;. 

Tj, = Toi,; &-i4 = 0, Es--/, = 0 

obtained from the appropriate boundary conditions 
for radiation intensity gives: 

The data on attenuation coe~cients k; and scattering 
indicatrices used in the calculations are given in Table 1. 
In all cases the weight particle concentration Y used 
for calculationg optical thicknesses 

was constant and equal to ;J = 0.2 x 10e3 g/cm”. 

0 

0 

I( 

it? 

C 

0 

L, cm 

FIG. 9. Radiant flux distribution qR over the bed 
L = icm with (curves 1, 3, 5) and without 

scattering (curves 2,4,6). 

Figure 9 gives comparison of radiant flux attenuation 
with (curves 1,3) and without scattering (curves 2,4). 
For fine particles r. = O,l urn (curves 1,2) a large cor- 
rection for scattering is introduced into the radiant 
flux. For more coarse particles r. z 0*4l.trn the effect 
of scattering is less essential. When the modal radius 
increases, the curves for real values of wi. and ud = 0 
practically coincide (curves 5,6). For the media with 

pa=+6 

radiant fluxes may be calculated with sufficient 
accuracy when scattering is neglected which is very 
important since in such cases scattering indicatrices 
should not be necessarily found. Replacement of a real 
indicatrix of unit volume scattering by an isotropic 
one slightly influences the value of the radiant flux in 
the media with fine particles (Fig. 10). With an increase 
in r, the error of radiant fluxes grows when real 
scattering is replaced by isotropic one. The calculations 
have shown that this error is 30 per cent and more 
for the media with p. > 6. Figure 11 gives the effect of 
the parameter r. on radiant flux attenuation. Curve 3 
describes radiant flux attenuation at r. = O-2 pm. Once 
each particle is 4 times decreased at the same 
concentration, radiant flux attenuation due to such 
decrease is increased by 4 times (curve 1). 

Table 1. 

No. PO f-0 bmmf k: Cm- ‘f wi. a, a2 a3 a4 

1 6 0.1 17.82 0.66 0.42 0.52 0.46 0.31 

: 6 6 D4 @1 17.82 3.88 0.71 066 0 1.82 0 2.78 0 342 0.71 0 
4 6 0.4 3.88 0.71 0 0 0 0 
5 2 a1 10.16 0,68 0.69 0.95 1.01 0.89 
6 2 0.05 21.71 0.64 0.35 0.41 0.34 0.21 
7 2 0.2 4.75 0.70 2.47 3.77 4.63 Sal 
sg ;‘O 0.t @l 20.87 15.03 0.65 066 0.37 0.49 0.63 0.43 0.600 0.35 0.20 0.45 
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in the Legendre polynomial series of the scattering 

indicatrix is taken into account. The approximate 

differential equation for purely absorbing media is the 

Miln-Eddington approximation for spherical sym- 

metry. This approximation when applied to purely 
absorbing media has some disadvantages. In [23] use of 
the differential approximation for the problems with 

non-plane geometry was considered. It was there shown 

that once sphere surface temperatures are not the same, 
the differential approximation appears non-exact in the 

o-z- 

? 0 

L, cm 

FIG. 10. Effect of scattering indicatrix on qR,. 
Solid curves represent real indicatrices; dashed 

ones, isotropic scattering. 

Wr, P) + 1 -P’ aI@, 4 
’ dr 

__~ = -kl(r,p)+c&(r) 
r d!J 

P ’ 
+ 2 

I 
I@, $)P(/J, $)d$. (17) _ 

1 

01 

The boundary conditions for intensity at the opaque 
diffuse walls may be written as : 

L. cm 

FIG. 11. Effect of parameter r0 on attenuation of 
I(rh/.&>o = ~IBVI) 

radiant flux @,: l-r,=0.05; 2-r,=O.l; 

s 

-1 

3 - r0 = 0.2 for p0 = 2. +(l-Ed I(rl,A,,<0p P d 
0 

2.2. Spherically symmetric bed I(r,dI,,<o = E2MTZ) 

The regularities of radiant energy transfer under 1 

spherical symmetry conditions are of great practical +(1-&Z) 

s 

I(r2,&>0p+. (18) 

interest and have intensively been studied during the 0 

recent years. The problem on radiant flux in the space 
between concentric spheres was solved for grey absorb- 

Let the intensity be given in the form: 

ing and emitting media by numerical integration of the 

exact integral equations, for example [1416], and by (19) 
use of the approximate differential equations [1619] 

I@, ,4 = & ,g (2i+ l)h(r)Pi(PL). 
I 0 

obtained from the classical moment method or its 
modifications as well as from some other differential Substituting series (19) into equation (17) multiplying 

approximations [2&22], which have not much in the both sides of the equation by (2k + l)P&) where 

common, that hampers their application. k = 0, 1,2,. . and integrating within - 1 < p < 1, we 

In all the above works anisotropic scattering of get an infinite system of equations for the moments 

media is not corsidered. In the present work, within Ii(r) : 

the classical spherical harmonics method the radiant 
flux equation is obtained for absorbing, emitting and dl,(r) 
anisotropically scattering media, that allows for scatter- 

aikT+ q+k/3ir-&/I, Zi(r) 1 
ing to a first approximation, i.e. only the first coefficient = 4rraB0, I&) (20) 

extreme case of optically thin gas. Moreover, this 
approximation does not permit the shadow effect from 

the inner sphere to be accounted for. However, as will 
be shown later, the approximate equation for inter- 

mediate values of optical thicknesses, where, unlike 

optically thin beds, scattering plays a very essential 
role, permits radiant fluxes to be determined with 
sufficient accuracy. 

A physical model of the problem considered consists 

of two non-transparent spheres with inner radius rl 
and outer radius r2. The intermediate space between 
them is filled with absorbing, emitting and scattering 
grey media with constant attenuation coefficients 

uniform across the medium. The opaque walls with the 
emissivity Ei (i = 1,2) uniform over the surface are 
assumed diffusely radiating. The radiation transfer 

equation may be written as : 
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where the coefficients uik, cc: and bik upon some trans- obtained, we should proceed from the boundary 
formations become : conditions for the radiant flux 

{ 

2(ifl), k=i+l 

Uik = 2i, k=i-1 

0, k+i+l, k#i-1 

1 

2i(i+ 1), k=i-1 

a$ = -2i(i$ l), k = i+l 
(21) 

0, k#i-1, k#i+l 

f% = 
1 

2, k=i 

0, kfi. 

With regard for series (19) the radiant flux may be 
expressed in terms of the first moment II(r) 

s 

1 

qR = 2 I@>P)P+ 
-1 

= ii~o(2i+1)4(r) 
i 

1 

Pi:~)illd~ = It@). 
-1 

+fl-&*)2?t 
s 

1 
J(rz, &dp, 

0 

corresponding to the boundary conditions (18) for 
intensities. Substitution of series (19) into equation (23) 
and term-by-term integration at M = 1 yield: 

at r = r1; fz1f0(r)+2(2-&,)II(r) = 4~~7rI~(T~) 

(24) 
The infinite system of equations (20) should be solved to 
find 1, (r), that is impossible. A finite system of (i14 + 1) 
equations is got by limiting EA terms in series (19). The 
approximation &f = 1 will be only considered. Then, 
from expressions (21) we may write the coefficients of 
system (20) as: 

at r = r2;EzZo(r)-2(2-&,)I,(r)= 4e2nle(T2). 

tl*() = a,, = c& = G!;“l = s(& = 0, u,o = a,, = 2, 

0$0=4, /?ro=Bot=O, Poo=2, Pt1=6. 

In this case equations (20) will be a system of two 
equations: 

Boundary conditions (24) for black surfaces were 
originally obtained by Chang [24] and may be 
considered the extension of Eddington’s method. 
Chisnell L-251 has obtained the same relations assuming 
semi-isotropic radiation intensity of the wall. Substitut- 
ing for IO(r) its expression from the first equation of 
system (22) at r = rl and r = r2 into (24) gives the 
following boundary conditions for equation (22) : 

d&(r) 2 
~+;l,(r) = --crlo(r)+4na~&) 

d&&J 
___ = (/hzl -3k)I, (r). 

dr 

(21) 

Hence, differentiating the first equation and substitut- 
ing for dle(r)/dr from the second equation we arrive at 
the second-order equation for the radiant flux 

r2 / .+(r) d2b (4 

d? 
7 - (ar’ + 2)1, fr) 

= 47ca&(r)rz, (22) 

where a = a(3k-pa,) > 0, since a, < 3. The above 
approximate equation for radiant flux in scattering 
media differs from the Miln-Eddington approximation 
for purely absorbing media 

d%&) 2 
-+-qR(r)- 31+f 

dr2 
qR(r) = 4naMr) 

r i > 

only by the coefficient a, which is equal to 3cr2 for 
absorbing media. With regard for scattering, the co- 
efficient a also depends both on w0 and the shape of the 
scattering indicatrix, i.e. on u,. 

Unlike the moment method for half-spaces which 
allows direct determination of exact boundary 
conditions, series (19) gives approximate boundary 
conditions for equation (22). That these conditions be 

(25) 

r=r2; 

Thus, radiant flux is found from the solution of the 
ordinary inhomogeneous differential equation of 
second order (22) with boundary conditions (25). 

Consider the problem which corresponds to the 
physical model described earlier in this paper. A heat- 
conducting medium is assumed in addition. 

The energy conservation equation for radiant- 
convective heat transfer and spherical symmetry has 
the form : 

1 d -- 
r2 dr 

1 dT(r) -----r,(r) = 0 
dr 

(24) 

where i is the thermal conductivity of the medium. 
The boundary conditions are as follows : 

atr=r,;T=T, 

at r = r2 ; T = Tl . 

Introduce dimensionless radiant flux P = (r~/aT.~), 
temperature 0 = T/T, and radius 5 = r/r2 where T, is 
some characteristic temperature. 
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Upon integration equation (26) in a dimensionless 
form may be written as : 

where C is the integration constant. 

Ak 
NE-- 

~uT,~ ’ 
t2 = kr, 

(27) 

Solution of equation (27) at the boundary conditions 

f&r=?; @=@1 
r2 

t= 1; o= 02 

gives the following integral expression for a 
temperature f3 : 

Let us find the expression for radiant flux P(r) from 
equation (22) which was preliminarily brought to a 
dimensionless form by dividing the both sides by uT.~ 
and by introducing new variable <. Since the identities 

ar: = (~~-l)(~~u~-3)7~ = a* 

cw2 = (I-wo)zz, 

are valid, equation (22) is reduced to: 

= 16( 1 - oo)tze3(~) F. (29) 

The above boundary conditions are accordingly written 
in a dimensionless form as : 

g= e,; 2(2-&r)- 
[ 

2E1 
(1 -wo)<r rz 1 p(5) 

El df%) = o 

-(1 dl 

(30) 

Formal solution of problem (29)-(30) by the variational 
method of arbitrary constant (26) results in the 
expression for the radiant flux: 

where 

2% 
A2 = w-~2)+(1_W0)72 

A= bldz-dlb2 

The system of integral equations (28), (31) for the fields 
of temperatures and radiant fluxes was numerically 
sofved by the iteration procedure on the computer 
M-220. 

At first, system (28), (31) was solved for purely 
absorbing media at the following parameters: 
&r = E2 = 1.0 

0, = 1,O; 0, = 0.5; t2 = 2.0; <r = fO*l-@95j, N = 0.1 

for comparison with the exact solution of the heat- 
conduction equation together with the radiation 
transfer equation of [26]. Figures 12 and 13 give plots 
oftemperature profiles and radiant fluxes at dimension- 
less distances (r-rl)/(r2 - rl) vs the surface geometry 

O,?- 

0.6- 

0.5 f 1 f 1 1 1 1 1 1 
0 0.2 0.4 0.6 0.8 I.0 

FIG. 12. Plot of temperature vs geometry factor: 
l-from equations (28), (31); 2-according to 

data of [26]. 



828 F. B. YUREVICH and L. A. KONYUKH 

r-r, 
-_----i 
‘i -rI 

FIG. 13. Radiant flux distribution P(c): solid 
lines-from equations (28) (31); dashed lines- 

data of [26]. 

factor Ei = r,/rZ. Comparison of these plots with the 
dataof [26] (dashed lines) shows the greatest deviations 
of the radiant fluxes calculated to a first approximation 
by the moment method from their exact values at small 
tr. In these very cases are observed physically senseless 
results obtained by the moment method for radiant 
fluxes in spherical symmetry, i.e. the values of P(r,) > 1. 
As far as t, (<, > 0.1) increases and the distance 
between spheres decreases, this effect is not observed. 
The calculations were made of black walls, therefore, 
for ei < 1 the ranges of applicability of the moment 
method for t1 may be extended. Comparison of 
temperature distributions obtained to the approxima- 
tion of the moment method with the exact values shows 
that the moment method gives good accuracy of 
temperature calculations. Although the method 
proposed gives overestimated values of radiant fluxes, 
usage of simple equation (22) seems more advisable 
compared to the complicated radiation transfer 
equation. 
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ATTENUATION DU RAYONNEMENT EN MILIEU DISPERSIF 

R&mm&La coefficient volumttriques d’attenuationet de diffusion sont analyses, ainsi que les indicatrices 
de diffusion du milieu dispersif avec additions mttalliques. Des mtthodes pour le calcul des flux de 
rayonnement dans les milieux ditfusifs anisotropes sont proposees pour des surfaces planes paralleles 
et B symetrie sphbique. On Ctudie I’influence des paramttres de la microst~cture du milieu sur ies 

flux de rayonnement. 
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STRAHLUNGSDAMPFUNG DURCH DISPERGIERTES MEDIUM 
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Zusammenfassung-Es werden die volumetrischen Koetiienten der Diimpfung, der Streuung und die 
Streuungsindikatrix von dispergierten Medien mit metallischen Zusiitzen untersucht. Methoden zur 
Berechnung von Strahlungseinfliissen in anisotropen streuenden Medien werden fur ebene parallele und 
spharisch symmetrische Schichten vorgeschlagen. Die Auswirkung der Parameter eines mittleren 

Feingefiiges auf die Strahlung wird erforscht. 

OCJIAKJIEHHE PAAHAI@IH JHV3-IEPCHbIMW CPEAAMH 

AtmoraqHJl - z’i~a~Iu3~py~xca 06skHbIe K03@&iLIUeHTbI ocna6nemin n PaCCWlHHJi, a TaXWe HHAH- 

KaTOpHCbI paCCeRHH%I AHCIIepCHbIX CPCA C MeTWIJIH’IeCKHMW AO6aBKaMH. l-@ZAJIaraIoTCSl MeTOAbI 

PaCdTa HHTeHCEiBHOCTH l7OTOKa H3JIyYeHkiS4 B aHu30TpOnHO-paC~HBaIonrux C&EAaX AJIlI lTapk3.JIJIWIL.H0- 

IIJIOCKOCTHbIX U C@.pH‘leCXri-CKMMeTpH’EHbIX CJIOeB. PaCCMaTpkiBaeTCR BJIURHW? IlapaMeTpOB MHKPO- 

CTpyKTypbI CpeAbI Ha UHTeHCUBHOCTb IIOTOKa Si3JI)“ieHWL 


