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Abstract—The volumetric coefficients of attenuation and scattering, and scattering indicatrices of disperse

media with metallic additives are analyzed. The methods to calculate radiant fluxes in anisotropically

scattering media are proposed for parallelplane and spherically symmetric beds. The effect of the
parameters of a medium microstructure on radiant fluxes is studied.

NOMENCLATURE

a;, coefficients of expansion into Legendre
polynomial series of the scattering indicatrix;

d, specific weight of particle material;

L, monochromatic radiation intensity;

Iz;,  monochromatic radiation intensity of
absolutely black body;

i1(0),i2(f), Mie-functions [1];
ks, attenuation coeflicient;

ko, kscar, coefficients of attenuation and scattering on
a single particle;
L, bed thickness;
P,(u)-, ith Legendre polynomial;
gr, radiant flux;

o, modal radius;
T, temperature;
oz, absorption coefficient;
Bi,  scattering coefficient;
1
Plus), = 3 aP@PR);
=
7, weight particle concentration;
dox»  Kronecker symbol;
&, emissivity;
o, dimensionless temperature;
0, angle;
A, wavelength;
i, = cosf;
o,  parameter of medium microstructure;
g, geometry factor;
0, difraction parameter;
w;, wg, spectral and integral albedo of single
scattering.

OPAQUE particles capable of absorbing and scattering
radiation may usefully be introduced into the wall layer
in many problems on surface protection from thermal
radiation. The problems on hydrodynamics and
radiative transfer in a non-uniform gas flow are
characterized by great complexity, and particular
aspects are studied inadequately, because alongside
with radiative-convective transfer phase transitions,
coagulation and aglomeration of particles should be

accounted for. First of all, study of optical properties of
a unit volume of a disperse medium seems probably
useful since calculation of radiant fluxes in disperse
media is based on the data on attenuation coefficients
and scattering indicatrices of a unit volume.

In this work radiant attenuation due to absorption
and scattering by a unit volume of a polydisperse
medium with metallic additives is investigated within
the framework of the single scattering theory. Multiple
scattering occurs when radiation passes through a
disperse bed. The method to calculate radiant fluxes
in a parallel-plane and spherically symmetric disperse
bed is proposed. The effect of scattering parameters
and medium microstructure on radiant fluxes is
analyzed.

1. REGULARITIES OF RADIANT ATTENUATION
AND SCATTERING BY MONO- AND
POLYDISPERSE MEDIA

Radiation attenuation by single spherical particles
due to absorption and scattering is thoroughly studied
using Mie’s theory [1]. Most detailed studies are
described in [2-5]). For example, a particle cluster in
the systems of different-size particles is of practical
interest for studying thermal protective materials. At
present vast material on radiation attenuation and
scattering by such polydisperse media has been
accumulated. The results obtained in [5-7] have
essentially contributed to the information on radiant
scattering, but they contain either parametric
calculations or the analysis of scattering phenomena
by specific media: aqueous aerosols, hail, dust clouds,
etc. These works are therefore of little interest for
studying radiative attenuation by disperse media with
metallic particles.

The calculation which will follow allow the relation-
ships between basic values of radiant absorption and
scattering and the microstructure of a disperse medium
with metallic spherical particles to be thoroughly
elucidated. The data on the complex refraction index
typical for many metals and used for calculating
attenuation coefficients and indicatrices are given in
Fig. 1.
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Fi1G. 1. Complex index of refraction m = n—ix vs
wavelength.

1.1. Monodisperse bed

A monodisperse bed is the extreme case of a poly-
disperse one. The values of the attenuation coefficients
of a monodisperse bed allow the upper limit of the
same coefficients of a polydisperse bed to be found.

If a unit volume of a transparent gas contains N
non-reacting particles of uniform radius r with the
distance between their centres at least 3r, then the
volumetric attenuation coefficient is defined by [3]:

k,= Nnrzkm, 0y

where k,, is the attenuation coefficient for a single
particle. In many practical problems, it is more
convenient to prescribe the dependence in the unit
volume on the weight concentration rather than on the
particle quantity in a unit volume y:
= on e )
24d p

where d is the specific weight of the particle material.

The formulae for volumetric coefficients of scattering
and absorption are the same. Figure 2 gives the plot of
spectral mass coefficients of attenuation k;/y and
scattering f,/y vs particle radius r. The quantities
ki, koot in formula (1) are calculated for single particles
using Mie’s formula [1] based on Deirmendjan’s
methods [S]. The curves in Fig. 2 show that particles
0-01-0-03 um in radius possess the largest attenuation
coefficients but only over a narrow range of the wave-
lengths considered. Particles 0-05-0-07um in radius
are therefore more effective for radiant attentuation,
since these have large attenuation coefficients and a
smooth spectral relationship over a sufficiently wide
spectral range.

1.2. Polydisperse bed
Now consider a polydisperse medium assuming that
all particles are spherical and possess the same optical
properties. The microstructure of the polydisperse
medium is characterized by the particle size distribution
function f(r). In many cases a sufficient approximation
to the real distribution is ensured by the gamma-

distribution (Fig. 3):
0= Ar"oexp[ ~ ko i] @
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Fi1G. 2. Spectral mass coefficients of atten-

uation (solid lines) and scattering (dashed

lines) of monodisperse media vs particle
radius.
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FIG. 3. Particle size gamma-distribution at
ro = 0-1 pm.



Radiation attenuation by disperse media

where A is the normalization factor, u, is the parameter
of the relative half-width of the distribution function,
ro is the most probable or modal particle radius. The
half-width of function (2) or the distance between its
branches B at the level f(r) = 0-5. f(ro) [13] is equal to:

B = 2:48ro// (o).

The spectral volumetric attenuation coefficient k;
for scattering §; and absorption ¢, in the polydisperse
medium is described by:

27TJ Pf( Ykau{p)d y
T ™ =%3k;1- A3)
j p*f(p)dp

P

k=3

|~

The coefficients k), f; and normalized indicatrices of
scattering by a unit volume of the polydisperse medium

1 r[ilw)wzw)]f(r)dr

2\? r
e

rf(r)dr

ry
are calculated on the electronic computer Minsk-32
by the methods described in [7]. The modal particle
radius 7, varied within 003 <r,<12um; the
parameter uo, within 2 < uo < 10. Integration with
respect to the sizes was made from p, = 0:025 to p,,
determined by f(p,) = 107 3f(p,).

The spectral coefficients of attenuation k) and
scattering £, (Figs. 4-6) are rather smooth functions
of the wavelength at r > 0-1 ym (Fig. 4). Such poly-
disperse media may be considered grey over the wave-
length range investigated. As far as the modal size r,
decreases, the curves become non-linear (Fig. 5) and
involve maxima most pronounced at ro, < 0-05um.
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FIG. 4. Spectral coefficients of attenuation k;

(solid lines) and scattering f) (dashed lines)

versus modal particle size r,, (figures at the curves
at pg = 2.
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FIG. 5. Spectral coefficients of attenuation &

(solid lines) and scattering 8, (dashed lines) vs

parameter o, for polydisperse medium,

ro=01um. The upper curve—k’; for mono-
disperse medium.

A, pm

FI1G. 6. Spectral attenuation coefficients
k), for fine polydispersions at ro = 0-05
um, ro = 0:03 pum.
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FIG. 7. Spectral distributions of parameter w, for different
modal radii at po, =6 (a) and of parameter u, (b) at
ro = 01 um.

With an increase in u, (Fig. 6), i.e. when the medium
becomes monodisperse, the attenuation coefficients
grow achieving the values for a monodisperse medium
atr = rq.

Figure 7(a, b) shows the effect of parameters , and
Ho upon the single scattering albedo w;.

Typical scattering indicatrices for a unit volume of a
polydisperse medium are given in Fig. 8.

For polydisperse media with fine particles
(ro ~005um), with an increase in up scattering
approaches isotropic one (Fig. 8a, b). For more coarse
modal sizes (Fig. 8d) almost the whole energy dissipated
by a unit volume stretches into a narrow beam directed
exactly forward, ie. scattering does not practically
contribute to net radiant attenuation. Radiant
attenuation occurs only due to absorption. As the
wavelength A increases, the scattering indicatrix
becomes less advanced (Fig. 8c).

Bo=10 #o=2

g=90°

8=0°

ro® 003 pm
N
/ \ §e0°
{c) oz 04,7 A4 Ax02
0-t :
§+180% : { §:0°

F16. 8. Shape of scattering indicatrices of polydisperse
media: a, b—for fine particles, ro < 01 pm; c—vs wavelength
A; d—for coarse particles, rg = 0-6 um.

2. CALCULATION METHOD FOR RADIANT
FLUXES IN DISPERSE MEDIA

In the radiant heat-transfer theory different methods,
both approximate and exact, which refer to the class
either of differential or of integral ones, are developed
to solve the radiation transfer equation. The both
classes are being developed simultaneously by various
workers. However, application of the integral methods
to the radiation transfer equation does not allow
frequently its solution to be obtained in the analytical
form, and much computer time is needed to get a
numerical solution. Therefore, together with the
integral methods the simple approximate differential
ones should be developed for radiant heat transfer.
The advantage of the former is relative simplicity, the
possibility to describe the problem by the well-known
class of differential equations which are fairly coupled
with those for heat conduction and convective heat
transfer when solving complex heat transfer problems.

2.1. Parallel-plane bed

During the recent years wide use has been made of the
moment method and its modifications [8-10] which
allows the equations for radiant flux gg, or its com-
ponents to be obtained based on the appropriate
integration of the radiation transfer equation. Good
accuracy of this method [8] is obtained when applied,
to a first approximation, to an isotropically scattering
medium. The calculation method of radiant fluxes,
equivalent to the first approximation of the moment
method [9], was proposed for anisotropically scattering
media with the arbitrary indicatrix. However, in
deriving the equation for g¢g, the discontinuity of
I (13, 1) at u = 0 was not accounted for. In addition,
only the first term a, of scattering indicatrix expansion
into the Legendre polynomials regards for the scatter-
ing indicatrix effect upon the radiant flux. In such a
case the value of the radiant flux is not always obtained
with sufficient accuracy, especially in case of a far
advanced scattering indicatrix.

The present work deals with the method of
calculation of radiant heat transfer in the parallel-
plane bed of absorbing, radiating and anisotropically
scattering media. This method is a modification of the
spherical harmonic method which was first proposed by
Ivon [11] for solution of neutron transfer equations.
To a first approximation, the system of ordinary
differential fourth-order equations is obtained for
radiant fluxes. This system allows for any numbers of
the terms of scattering indicatrix expansion into the
Legendre polynomials.

Consider a parallel-plane suspension bed bounded
by diffusely emitting surface. The radiation transfer
equation for the spectral radiation intensity in-

dependent of the asimuthal angle ¢ has the form:
{15, W
ﬂ—;;%+ g, p)=(1—w g {T)

w; [t
+~?J Py, i) (s, @)dy’ . (5)
-1
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The boundary conditions at the surfaces with
temperatures T; (i =1,2) and emissivity ¢ are as
follows:

7, =0; L= ;1 15,(Th)

-1
+2(1 —su)j I; 0, pdu
_ (6)
T =70, 7 (15, 1) = €52 Ip (T7)
1
+2(1 —su)j If (tos Wudy,

where If(1;, ) are intensities at positive and negative
U

The calculation method for radiant fluxes is based
on the concept of the radiation intensity in terms of the
Legendre polynomials series. Here, because of the
discontinuity of I,(t,, u) at u = 0 two different series are
used:

) =4 ¥ Qi DIEIPQITD. ()

Series (7) allows a sufficiently simple expression to be
obtained for the radiant flux:

1
qRA = ZnJ‘ I(Tb H)#dﬂ = %{[I(;-(rt)_l()_(fl)]
-1
+ I )+ I (@]} = d{h(z)+ L)

Substitution of expression (7) into radiation transfer
equation (5) and some mathematical transformations
[12] result in the system:

di;
a3 dt(” 1 Bl () = 4n(l — )80 I5,(T)

+?{Ii (@Y +iretE (@T)y—iea)s

( 1):+k+l dl (TA) ﬁnk

=4n(l1— wl)éﬁkIBx(T)
@, _
+ 7{1i+(‘u)?+i—k+1i (Td7-i-}
(,k=0,1,2,..) 9
under the boundary conditions for the series moments

F(zy):

1, =0: BT (0) =

(1)

4ne;, IB;(TL)aok
+2(1 ;)1 (0)0;0 S

- (10)
T = Toa! Budi (Tos) = 4mes2 Ip,(T2) Bon
Here +2(1 —&35)1;" (to2) %0 dox
%a k = i_].
2i+1 )
i = qu—-l ﬁ ~ O’,;ék
¥,k=i+1 21 =k

O k>i+l, k<i—-1
The coefficient matrix

1
Privr = (2i+1)(2k+1)f dﬂf P(2u—-1)
0 o

(11)

x P2y =1)P(y, p')dpt
1
V+s—k=(2i+1)(2k+1)f dﬂj P2u+1)
-1

X Py —1)P(u, ) dp
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1 (]
Yoidk = (2i+1)(2k+1)J dﬂj P(2p—1)
0 -1
x Pi2p' + )Py, i) dp

0

(4]
Voiox = Qi+ D2k + 1) duf P.Cu+1)
-1 -1

x P2y + )P () dy (12)
possesses symmetry properties:

L Yiien = Veeti

2’
2 ViorktY 04k = 0,

2

Y-o+xtV-0-k= 0.
3oy = (=1 4504
Yrik=(— 1) P

With a finite number M in series (7) taken, system (%)
of 2(M + 1) equations is obtained for I;*(z;).

It should be noted that at M =0 system (9) at
boundary conditions (10) coincides with the known
Schwartzschield-Schuster approximation. The radiant
flux to this approximation is given by:

re = 3o (1) =15 (1] = (). (14)
At M =1, upon some transformations of system (9)
with relations (11)}«13), the system of ordinary
differential fourth-order equations with constant
coeflicients is got to calculate radiant heat transfer:

dly(r3)
dT}_
diy(ts)
dT}_
dhy(ea) _
d'L';v B
dis(z))

dr;
where

Lie) = I (t)+15 (2, L(t) =LK (@)—17 ()

The coefficients of system A; depend on parameter
w, and coefficients of expansion into the Legendre
polynomial series of the scattering indicatrix a;:

= A ow A
A\
—_ 0 = O

(13)

\%

= Ay I3t )+ A, La(t;)+ 24n(l — ) I (T)

= Az l3(t )+ Ay la(r) ~8r(l — )1, (T)
(15)

Lit)+ Aela(ty)

= A7!1(Ta)+AS lz(TA)

A =3w,—1)

Ay = %[6—(0,1(?5—)75)]
A3 = 1—‘(,0,1

A4 = —A2

As = 3 3w,(y1 —y2) — 20,73 —6]

Ag = 360,73 —w;(ye+7s)+6]

Ay = o3+ 14— 0y ~72)+2]

Ag = Hawys+re)—wi(y3+74)—6]

Y1 = 1430, +das +2d6as, 72 =2-7
73 =31~y +}ay), Ya =73

1
Y6 =9[r —2(1+3a;)] +36[% +5al +éa, +z-}oxa4]

ys = 2a;—



824 F. B. YUReVIcH and L. A. KONYUKH

In the above formulae the number of the terms for
scattering indicatrix series is limited to / = 5 since such
indicatrices are of greatest interest.

Boundary conditions (10) closing system (15) may be
reduced to:

T, = 0; 32‘1“14 = 0,
ly+1y = 8me;y In (T +(1—e55)(la— 1) (16)
T, =g L—ly =0,

Bl = 8nep I (T} +(1—g:0) (s + 1)

As has earlier been shown [12], based on system
(15y{(16) calculation of radiant fluxes ensures good
accuracy of the method. Comparison of the expressions
for exact radiant flux (8) with the Schwartzschield—
Schuster approximation (14) shows that the difference
lies in the terms I;"(t;)+ I (z,) which is neglected at
M = 0. This is the reason of insufficient accuracy of
the Schwartzschield-Schuster approximation in many
cases. The approximation M = 1 eliminates this draw-
back.

The spectral radiant fluxes in absorbing and
scattering media were calculated to analyze the effect
of scattering parameters and the medium micro-
structure upon radiant attenuation:

Ga, = 4R,
® 7510;'

(A =03 um).

Solution of system (15) with the boundary conditions

1,= 0, {2+£4 = 0,

T, =Tou a—1ls =0,

z1+{3 =8TCI();_
l3—1 =0

obtained from the appropriate boundary conditions
for radiation intensity gives:

L0, wly>0 = Lo

I/'.(TO/'J #)ln<0 =0,
The data on attenuation coefficients k), and scattering
indicatrices used in the calculations are givenin Table 1.

In all cases the weight particle concentration y used
for calculationg optical thicknesses

TriL

37
Tosr = L

was constant and equal to v = 0:2x 10~ 3 g/om®,

X

F1G. 8. Radiant flux distribution gg over the bed
L =1cm with (curves 1, 3, 5) and without
scattering (curves 2, 4, 6),

Figure 9 gives comparison of radiant flux attenuation
with (curves 1, 3) and without scattering (curves 2, 4).
For fine particles ro = 0-1 pm {(curves 1, 2 a large cor-
rection for scattering is introduced into the radiant
flux. For more coarse particles ro  0-4 um the effect
of scattering is less essential. When the modal radius
increases, the curves for real values of w; and w; =0
practically coincide (curves 5, 6). For the media with

27”'0
=0
Po 7

radiant fluxes may be calculated with sufficient
accuracy when scattering is neglected which is very
important since in such cases scattering indicatrices
should not be necessarily found. Replacement of a real
indicatrix of unit volume scattering by an isotropic
one slightly influences the value of the radiant flux in
the media with fine particles (Fig. 10). With an increase
in ry the error of radiant fluxes grows when real
scattering is replaced by isotropic one. The calculations
have shown that this error is 30 per cent and more
for the media with p, > 6. Figure 11 gives the effect of
the parameter r, on radiant flux attenuation. Curve 3
describes radiant flux attenuation at r, = 0-2 um. Once
each particle is 4 times decreased at the same
concentration, radiant flux attenuation due to such
decrease is increased by 4 times (curve 1).

Table 1.

No. uo rofum) ki(m™) o, a as a3 aa
1 6 01 17:82 0-66 042 052 0-46 031
2 6 04 388 071 1-82 278 3:42 071
3 6 01 17-82 0-66 0 0 0 0
4 6 04 3-88 071 0 0 0 Q
5 2 (131 10-16 068 0-69 095 101 0-89
6 2 005 21N 0-64 0-35 041 0:34 021
7 2 02 475 070 247 377 463 500
8 4 o1 1503 066 0-49 063 0-600 045
9 10 Ot 2087 065 037 043 035 020




Radiation attenuation by disperse media

L, ¢m

F1G. 10. Effect of scattering indicatrix on gg,.
Solid curves represent real indicatrices; dashed
ones, isotropic scattering.

O-6—

| | ! | |
o 0-2 04 06 08 -0

L, cm
Fi1G. 11. Effect of parameter r, on attenuation of
radiant flux gqg,: 1—rog=005; 2—ro=01;
3—ro=02for yg=2.

2.2. Spherically symmetric bed

The regularities of radiant energy transfer under
spherical symmetry conditions are of great practical
interest and have intensively been studied during the
recent years. The problem on radiant flux in the space
between concentric spheres was solved for grey absorb-
ing and emitting media by numerical integration of the
exact integral equations, for example [14-16], and by
use of the approximate differential equations [16-19]
obtained from the classical moment method or its
modifications as well as from some other differential
approximations [20-22], which have not much in
common, that hampers their application.

In all the above works anisotropic scattering of
media is not corsidered. In the present work, within
the classical spherical harmonics method the radiant
flux equation is obtained for absorbing, emitting and
anisotropically scattering media, that allows for scatter-
ing to a first approximation, i.e. only the first coefficient

825

in the Legendre polynomial series of the scattering
indicatrix is taken into account. The approximate
differential equation for purely absorbing media is the
Miln-Eddington approximation for spherical sym-
metry. This approximation when applied to purely
absorbing media has some disadvantages. In [23] use of
the differential approximation for the problems with
non-plane geometry was considered. It was there shown
that once sphere surface temperatures are not the same,
the differential approximation appears non-exact in the
extreme case of optically thin gas. Moreover, this
approximation does not permit the shadow effect from
the inner sphere to be accounted for. However, as will
be shown later, the approximate equation for inter-
mediate values of optical thicknesses, where, unlike
optically thin beds, scattering plays a very essential
role, permits radiant fluxes to be determined with
sufficient accuracy.

A physical model of the problem considered consists
of two non-transparent spheres with inner radius r;
and outer radius r,. The intermediate space between
them is filled with absorbing, emitting and scattering
grey media with constant attenuation coefficients
uniform across the medium. The opaque walls with the
emissivity g (i = 1,2) uniform over the surface are
assumed diffusely radiating. The radiation transfer
equation may be written as:

1—u?dI(r,
Gl ”)=—k1(r,u)+ot13(r)

o,
(r u)+

# or r ou

1
+§J 1, 1)P i) di. (1)

-1

The boundary conditions for intensity at the opaque
diffuse walls may be written as:

I(ry, W0 = &1 1p(Th)
-1
+(1—81)J Iy, il <o udp
0

I(ra H)|u<0 =& IB(TZ)

1
+(1—82)J I(ra, >0 pdp. (18)
0
Let the intensity be given in the form:
Z (2i+ 1) L(r)P(w). (19)

Substituting series (19) into equation (17), multiplying
the both sides of the equation by (2k + 1) P(u) where
k=0,1,2,... and integrating within —1 < u <1, we
get an infinite system of equations for the moments

L(r):

dI(r)
i dr

[‘*+kﬂ.k —Ba; ﬁ.k] (1)
= dnafoI5(r)  (20)
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where the coefficients a;,, o} and §; upon some trans-
formations become :

2(+1), k=i+1
e = < 24, k=i-1

0, k#i+1, k+#i-1
. 2l(lf1)‘ k= x.—l o
o =< =2ii+1), k=i+1

0, k#i—-1, ks#i+1

2, k=i
Bu= }(0, k+#i.
With regard for series (19) the radiant flux may be
expressed in terms of the first moment I, (r)

1
CIR=2J‘

z (2;+1)1(r)f

I(r, e dp

8

Pi{wudu = 5L ().

The infinite system of equations (20) should be solved to
find I,(r), that is impossible. A finite system of (M + 1}
equations is got by limiting M terms in series (19). The
approximation M = | will be only considered. Then,
from expressions (21) we may write the coefficients of
system (20) as:
tog =ty = oo = o =ad; =0, ayo=00 =2,
aYo=4, Bio=for=0, Boo=2, Biy=6

In this case equations (20) will be a system of two
equations:

dIl (r) + _2. 11 (r) = - otIO(r) + 471:0513(")
dr r

dlo(r)
dr

(21)

= (Ba; —3k) i (r).

Hence, differentiating the first equation and substitut-
ing for dIo(r)/dr from the second equation we arrive at
the second-order equation for the radiant flux

d211 {?‘)

5 — (@ + DL ()

= dnody(rir?,

, dL)
E3 )

where a = a(3k—fa;) > 0, since a; < 3. The above
approximate equation for radiant flux in scattering
media differs from the Miln-Eddington approximation
for purely absorbing media

d?qr(r) 2
dr? ty

. 2
ax()- <3a +r—2)qk(r) = dnalj(r

only by the coefficient a, which is equal to 3o* for
absorbing media. With regard for scattering, the co-
efficient a also depends both on w, and the shape of the
scattering indicatrix, i.e. on «;.

Unlike the moment method for half-spaces which
allows direct determination of exact boundary
conditions, series (19) gives approximate boundary
conditions for equation (22). That these conditions be

obtained, we should proceed from the boundary
conditions for the radiant flux

1
r=ry;2m f I(r, wpedp = g, 7le(Th)
O

—1
+{1 -—s,)2n] I{ry, wudu
0
(23)

-1
F=ry; ZnJ Hr, ppdu = eynlg(Ty)
¢

1
+(1 ‘82)275j Ira, wpdy,
0

corresponding to the boundary conditions (18) for
intensities. Substitution of series (19) into equation (23)
and term-by-term integration at M = 1 yield:

atr=ry;e lo(r+2Q2—e H (1) = dgy nlp(Ty)
(24)
atr=ry; 6 Io(r—2Q2—&)1,(r) = de,nly(T>).
Boundary conditions (24) for black surfaces were
originally obtained by Chang [24] and may be
considered the extension of Eddington’s method.
Chisnell [25] has obtained the same relations assuming
semi-isotropic radiation intensity of the wall. Substitut-
ing for Iy(r) its expression from the first equation of
system (22) at r=r; and r =r, into (24) gives the
following boundary conditions for equation {22}:

r=ry; [2(2—-61)—2.8.1:][1(r)__f_1_w=0

ryo a dr
(25)

&2 dL(r)

?‘—3"2,{:2(2 82)+ :]Il()'f‘ . =0.
dr

Thus, radiant flux is found from the solution of the
ordinary inhomogeneous differential equation of
second order (22) with boundary conditions (25).

Consider the problem which corresponds to the
physical model described earlier in this paper. A heat-
conducting medium is assumed in addition.

The energy conservation equation for radiant-
convective heat transfer and spherical symmetry has

the form:
1d dT{r)
o]

where 4 is the thermal conductivity of the medium.
The boundary conditions are as follows:

(26)

atr=r; T=T,

atr=ry; T=T,.
Introduce dimensionless radiant flux P = (I,/o T.*),

temperature ® = T/7T, and radius & = r/r, where T. is
some characteristic temperature.
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Upon integration equation (26) in a dimensionless
form may be written as:
deE) 1 P(é)
114 52
where C is the integration constant.

Ak
T 46T’

@7

Ty = krz

Solution of equation (27) at the boundary conditions

r
xé1=—1§ 0 =0,

T2
(=1

gives the following
temperature 6:

1
0= {w,( c)+®z(%—1)}

et

0=06,
integral expression for a

¢112 !

Lo f P+ x| P
T
4N€ &1

Let us find the expression for radiant flux P{¢) from
equation (22) which was preliminarily brought to a
dimensionless form by dividing the both sides by aT:*

and by introducing new variable £. Since the identities
ar? = (we— 1} {wea, ~3)1% = a*
ar; = (1 —wo)ta,

are valid, equation (22) is reduced to:

d’P() 24P 2
(e

@ T de
— 16(1—-wo)t 293(@"9

© 29)

The above boundary conditions are accordmgly written
in a dimensionless form as:

t=t0; {2(2—81)7—1-_—;35—1;;]1%@
__a A o
(1—awg)r, dé
(30)
E=1; [2(2—ez)+(1_2 2) ]P(é)
& 9_1_‘%_5)_0
(I1—mp)r, d&

Formal solution of problem (29)-(30) by the variational
method of arbitrary constant (26) results in the
expression for the radiant flux:

16(} 6{)0)’52

Ada,
1
®1(f)df+dxbzf 20,0 ()de
4

§
P(S) = {‘01 (i)[bx dz L 20O

1
+did, fzfpl(f)@a(f)@l(f)df]
4

+(Pz(5)[b1 d; L 01 (0909 d¢
1

4
—bad; j £ (50BN dE
3!

1
*b1sz 52%(5)@3(5)@1(5)(15]} (31
S1

where \/ \/
_ sinh(y/a*)¢  cosh(/a*)¢
(pl(é)'— (\/a*)éz 5
_ cosh(y/a*)¢  sinh(/a*)¢
‘Pz(f) = (\/a*)fz 5

by = A,¢1((1)-B1oi€y),
dy = A1 0,(&1)—B193(&y)
b, = A,0,(1)+ B0} (1),
d2 = A,0,(1)+ By 93(1)

281
A =202—g)~— 1
! RTE v
- &
' (1—awo)t;
282
Ay =22~ -
=2
A=b1d2"‘d1b2

The system of integral equations (28), (31) for the fields
of temperatures and radiant fluxes was numerically
solved by the iteration procedure on the computer
M-220.

At first, system (28), (31) was solved for purely
absorbing media at the following parameters:
g =6=10

0, =10,0,=05;1,=20; ¢, = {01 - 095}, N= 01

for comparison with the exact solution of the heat-
conduction equation together with the radiation
transfer equation of [26]. Figures 12 and 13 give plots
of temperature profiles and radiant fluxes at dimension-
less distances (r—ry)/(r,—r;) vs the surface geometry

r-r

r2= 4

F1G. 12. Plot of temperature vs geometry factor:
1—from equations (28), (31); 2—according to
data of [26].
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Fic. 13. Radiant flux distribution P({): solid
lines—from equations (28), (31); dashed lines—
data of [26].

factor &, = ry/ry. Comparison of these plots with the
data of [ 26] (dashed lines) shows the greatest deviations
of the radiant fluxes calculated to a first approximation
by the moment method from their exact values at small
£;. In these very cases are observed physically senseless
results obtained by the moment method for radiant
fluxes in spherical symmetry, i.e. the values of P(¢,) > 1.
As far as £,(&; > 01) increases and the distance
between spheres decreases, this effect is not observed.
The calculations were made of black walls, therefore,
for ¢ < 1 the ranges of applicability of the moment
method for &, may be extended. Comparison of
temperature distributions obtained to the approxima-
tion of the moment method with the exact values shows
that the moment method gives good accuracy of
temperature calculations. Although the method
proposed gives overestimated values of radiant fluxes,
usage of simple equation (22) seems more advisable
compared to the complicated radiation transfer
equation.
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ATTENUATION DU RAYONNEMENT EN MILIEU DISPERSIF

Résumé— Les coefficient volumétriques d'atténuation et de diffusion sont analysés, ainsi que les indicatrices

de diffusion du milieu dispersif avec additions métalliques. Des méthodes pour le calcul des flux de

rayonnement dans les milieux diffusifs anisotropes sont proposées pour des surfaces planes paralléles

et a symétrie sphérique. On étudie Pinfluence des paramétres de la microstructure du milieu sur les
flux de rayonnement.
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STRAHLUNGSDAMPFUNG DURCH DISPERGIERTES MEDIUM

Zusammenfassung—Es werden die volumetrischen Koeffizienten der Ddmpfung, der Streuung und die

Streuungsindikatrix von dispergierten Medien mit metallischen Zusidtzen untersucht. Methoden zur

Berechnung von Strahlungseinfliissen in anisotropen streuenden Medien werden fiir ebene parallele und

sphdrisch symmetrische Schichten vorgeschlagen. Die Auswirkung der Parameter eines mittleren
Feingefliges auf die Strahlung wird erforscht.

OCJIABJIEHUE PAOUALINN JUCIEPCHBIMU CPEOAMU

AHHOTAIRA — AHATH3UPYIOTCA 00BEMHbBIE KOIDPHIHEHTH! OcIalIeHus H PACCesHHS, 4 TAKKE HHH-

KaTOPHUCHl DaccesHUs NHUCIEPCHLIX CPEN ¢ MeTa/UIHYecKMMH mobaskamu. Ilpemmararorcs metons!

pacyéTa HHTEHCHBHOCTH IIOTOKA H3JIYYEHHA B AHM30TPOITHO-PACCENBAIOILMX CPEAax IUIA MapaslieIbHO-

IUIOCKOCTHBIX U chepHyecku-CHMMETPHYHBIX CI0eB. PaccMaTpHBaeTCsl BIHAHME NapaMeTPOB MUKPO-
CTPYKTYDBI Cpefibl Ha HHTEHCHBHOCTE IOTOKA H3/TYYeHHUSA.
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